Search results for "Betti numbers"
showing 4 items of 4 documents
Data structures and algorithms for topological analysis
2014
International audience; One of the steps of geometric modeling is to know the topology and/or the geometry of the objects considered. This paper presents different data structures and algorithms used in this study. We are particularly interested by algebraic structures, eg homotopy and homology groups, the Betti numbers, the Euler characteristic, or the Morse-Smale complex. We have to be able to compute these data structures, and for (homotopy and homology) groups, we also want to compute their generators. We are also interested in algorithms CIA and HIA presented in the thesis of Nicolas DELANOUE, which respectively compute the connected components and the homotopy type of a set defined by…
Regularity and h-polynomials of toric ideals of graphs
2020
For all integers 4 ≤ r ≤ d 4 \leq r \leq d , we show that there exists a finite simple graph G = G r , d G= G_{r,d} with toric ideal I G ⊂ R I_G \subset R such that R / I G R/I_G has (Castelnuovo–Mumford) regularity r r and h h -polynomial of degree d d . To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O’Keefe that compares the depth and dimension of toric ideals of graphs.
On the variations of the Betti numbers of regular levels of Morse flows
2011
Abstract We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Betti numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z p Z with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds.
Splittings of Toric Ideals
2019
Let $I \subseteq R = \mathbb{K}[x_1,\ldots,x_n]$ be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal $I$ can be "split" into the sum of two smaller toric ideals. For a general toric ideal $I$, we give a sufficient condition for this splitting in terms of the integer matrix that defines $I$. When $I = I_G$ is the toric ideal of a finite simple graph $G$, we give additional splittings of $I_G$ related to subgraphs of $G$. When there exists a splitting $I = I_1+I_2$ of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of $I$ in terms of the (multi-)graded Betti numbers of $I_1$ and $I_2$.